Posted by Martin Orr on
Tuesday, 26 April 2011 at 12:35

In this post I will define dual abelian varieties over the complex numbers.
The motivation is that polarisations can be interpreted as isogenies from an abelian variety to its dual.
For the moment, all this is tied to Hodge structures so only works over the complex numbers,
but this is the view of polarisations which will we will generalise later to other fields.

Tags
abelian-varieties, alg-geom, hodge, maths
Read more...

Posted by Martin Orr on
Saturday, 26 March 2011 at 16:07

Last time, we defined polarisations on

Hodge structures and saw that if

is a complex abelian variety, then

has a polarisation.
This time we will prove the converse: if

is a complex torus such that

has a polarisation,
then

is an abelian variety (in other words,

can be embedded in projective space).
The proof is based on studying invertible sheaves on

.

This is long, even though I have left out all the messy calculations. For full details, see Mumford's *Abelian Varieties* or Birkenhake-Lange's *Complex Abelian Varieties*.
For the next post, you will only need to know the two statements labelled as theorems.

This theorem is a special case of the Kodaira Embedding Theorem, which tells you that any compact complex manifold is projective if it has a polarisation, but that is somewhat more difficult.

Tags
abelian-varieties, alg-geom, hodge, maths
Read more...

Posted by Martin Orr on
Saturday, 26 February 2011 at 18:27

In the last post, I discussed Hodge symplectic forms.
Now I shall show that the

of an abelian variety has a polarisation, which is defined to be a Hodge symplectic form satisfying a positivity condition.
The importance of polarisations is that they give a way of recognising which

Hodge structures come from abelian varieties - I shall discuss this application next time.

Tags
abelian-varieties, alg-geom, hodge, maths
Read more...